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CHAPTER 4
STRUCTURE STABILITY

4-1. Scope . This chapter presents information for stability analysis of re-
taining walls and inland and coastal flood walls. The methods of analysis to
determine overturning and sliding stability and to assess bearing capacity are
discussed. The forces as determined in Chapter 3 are used to assess overturn-
ing stability and bearing capacity. In certain cases as described in this

chapter, the same forces computed for overturning may be used to check sliding
stability. In other cases, sliding stability should be computed by the multi-

ple wedge iterative method or by an adjustment of the driving and resisting
wedge forces based on the factor of safety required, both of which are dis-
cussed in this chapter. Loading conditions for the various types of walls and
the acceptable criteria for each loading condition are given for each of the
stability analyses.

Section |. Loading Conditions

4-2. Representative Loading Conditions . The following loading conditions are
generally representative of conditions affecting retaining walls and inland

and coastal flood walls. The loading cases for a specific wall should be

chosen, as applicable, from the lists below. Loading conditions which are not

listed below should be analyzed, where applicable. Note that some walls may
require consideration of loadings from both lists, as discussed in

paragraph 2-9.

4-3. Retaining Walls

a. Case R1, Usual Loading . The backfill is in place to the final eleva-
tion; surcharge loading, if present, is applied (stability should be checked
with and without the surcharge); the backfill is dry, moist, or partially sat-
urated as the case may be; any existing lateral and uplift pressures due to
water are applied. This case also includes the usual loads possible during
construction which are not considered short-duration loads.

b. Case R2, Unusual Loading . This case is the same as Case R1 except the
water table level in the backfill rises, for a short duration, or another type
of loading of short duration is applied; e.g., high wind loads
(paragraph 3-25), equipment surcharges during construction, etc.

c. Case R3, Earthquake Loading . This is the same as Case R1 with the
addition of earthquake-induced lateral and vertical loads, if applicable; the
uplift is the same as for Case R1.

4-4, Inland Flood Walls

a. Case 11, Design Flood Loading . The backfill is in place to the final
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elevation; the water level is at the design flood level (top of wall less
freeboard) on the unprotected side; uplift is acting.

b. Case 12, Water to Top of Wall . This is the same as Case |1 except the
water level is at the top of the unprotected side of the wall.

c. Case 13, Earthquake Loading . The backfill is in place to the final
elevation; the water is at the usual level during the non-flood stage; uplift,
if applicable, is acting; earthquake-induced lateral and vertical loads, if
applicable, are acting. (Note: This case is necessary only if the wall has a
significant loading during the non-flood stage.)

d. Case |4, Construction Short-Duration Loading . The flood wall is in
place with the loads added which are possible during the construction period,
but are of short duration such as from strong winds (paragraph 3-25) and con-
struction equipment surcharges.

4-5. Coastal Flood Walls

a. Case C1, Surge Stillwater Loading . The backfill is in place to the
final elevation; the water is at the surge stillwater level on the unprotected
side; wave forces are excluded; uplift is acting.

b. Case C2a, Nonbreaking Wave Loading . This is the same as Case C1 with
a nonbreaking wave loading added, if applicable; uplift is the same as for
Case Cl1.

c. Case C2b, Breaking Wave Loading . This is the same as Case C1l with a
breaking wave loading added, if applicable; uplift is the same as for Case C1.

d. Case C2c, Broken Wave Loading . This is the same as Case C1l with a
broken wave loading added, if applicable; uplift is the same as for Case Cl1.

e. Case C3, Earthquake Loading . The backfill is in place to the final
elevation; water is at the usual (non-storm) level; uplift, if applicable, is
acting; earthquake-induced lateral and vertical loads, if applicable, are act-
ing. (Note: If the wall has no significant load during the usual (non-storm)
stage, no earthquake case is necessary.)

f. Case C4, Construction Short-Duration Loading . The flood wall is in
place with the loads added which are possible during the construction period
but are of short duration, such as from strong winds and construction equip-
ment surcharges.

g. Case C5, Wind Loading . The backfill is in place to the final eleva-
tion; water is at the usual (non-storm) level on the unprotected side; a wind
load of 50 Ib/sq ft on the protected side of the wall is applied
(paragraph 3-25).
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Section Il. Stability Considerations
4-6. General Requirements . Figure 4-1 illustrates the potential failure
modes for which stability must be analyzed. The basic requirements for the
stability of a retaining or flood wall for all loading conditions are dis-
cussed below.
a. The wall should be safe against sliding at its base, through any soil
layer or rock seam below the base.
b. The wall should be safe against overturning at its base, and, in the
case of gravity walls, at any horizontal plane within the wall.
c. The wall should be safe against bearing failure and excessive differ-
ential settlement in the foundation.
4-7. Stability Criteria . The stability criteria for retaining walls and in-
land and coastal flood walls are listed, by loading case, in Tables 4-1
through 4-3.
Section Ill. Overturning Stability
4-8. Resultant Location
a. General Computations . To assess the overturning stability of a wall,

such as the one with a horizontal base shown in Figure 4-2 (see examples 1, 2,
3, 5 6, and 7 of Appendix N), all operative forces must be applied to a free
body of the structural wedge wall/soil system. Methods to calculate the lat-

eral and uplift forces are discussed in Chapter 3. The moments of these

forces are summed about point O as shown in Figure 4-2 and the distance X
is calculated as:

summation of moments about Point O
b TV

where
2V = resultant base force required for vertical equilibrium
A ratio defined as the resultant ratio is computed as follows:

R

horizontal width of base

Resultant ratio =

Equations 4-1 and 4-2 are valid for a wall with a horizontal base with or
without a key and for a wall with a sloped base and a key. If a wall has only
a sloped base (no key), as shown in Figure 4-3 (see example 4 of Appendix N),

xR is calculated as:
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- summation of moments about Point O
R effective normal base force, N'

The resultant ratio is defined as:

*R

sloped base width

Resultant ratio =

The resultant ratio is related to the percent of the base in compression as
shown in Figure 4-4. The percent of the base of the structure which is in
compression should be checked for compliance with the overturning stability
criteria discussed in paragraph 4-9.

b. Walls with Keys

(1) Performing an overturning stability analysis on a wall with a key
requires determining the resisting forces acting along the key and along the
base. Since these forces are indeterminate and cannot be determined by equi-
librium methods, the following assumptions are made in order to compute the
overturning stability. For a wall with a horizontal base and a key, the
shearing resistance of the base is assumed to be zero and the horizontal
resisting force acting on the key is that required for equilibrium, as shown
in Figure 4-5. For a wall with a sloping base and a key, the horizontal force
required for equilibrium is assumed to act on the base and the key, as shown
in Figure 4-6. In both cases the resisting soil force down to the bottom of
the toe may be computed using at-rest earth pressure if the material on the
resisting side will not lose its resistance characteristics with any probable
change in water content or environmental conditions and will not be eroded or
excavated during the life of the wall. See examples 3 and 6 of Appendix N for
stability analyses of walls with keys.

(2) Prior to performing an overturning analysis, the depth of the key and
width of the base should be determined from a sliding stability analysis.

c. Sloping Backfills . For an upward-sloping backfill, an additional
shear force can be taken advantage of in the overturning analysis. The calcu-
lation of this shear force is shown in Figure 4-7. The magnitude of this
shear force is just large enough to cause the horizontal forces acting on the
stem to be equal to the part of the horizontal wedge force that lies above the
heel of the wall. This will cause the force used for the structural design of
the stem to be equal to the force used in the stability analyses. This force
will also cause the summation of moments about the stem-toe-heel joint to
equal zero for the structural design. The derivation of this shear force is
given in Appendix K. A wall with a sloping backfill is shown in example 1 of
Appendix N.
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d. Uplift For Walls with Keys . For walls with keys, the soil may be
assumed to remain in contact with the key and head loss to occur around the
perimeter of the key and along the base even if the overturning analysis shows
less than 100 percent of the base in compression.

4-9. Overturning Stability Criteria . The overturning stability requirements
in Tables 4-1 through 4-3 are given as minimum percent base areas in compres-
sion. Figure 4-4 illustrates the relationship between the percent of the base

area in compression and the resultant location.

Section IV. Structure Sliding Stability

4-10. Overview of Sliding Stability Analysis

a. Purpose . The purpose of a sliding stability analysis is to assess the
safety of a structure against a potential failure due to excessive horizontal
deformations. The potential for a sliding failure may be assessed by
comparing the applied shear forces to the available resisting shear forces
along an assumed failure surface. A sliding failure is imminent when the
ratio of the applied shear forces to the available resisting shear forces is
equal to 1.

b. Analysis Model

(1) The shape of the failure surface may be irregular depending on the
homogeneity of the backfill and foundation material. The failure surface may
be composed of any combination of plane and curved surfaces. However, for
simplicity all failure surfaces are assumed to be planes which form the bases
of wedges as shown in Figure 4-8.

(2) Except for very simple cases, most sliding stability problems en-
countered in engineering practice are statically indeterminate. To reduce a
problem to a statically determinate one, the problem is simplified by dividing
the system into a number of rigid body wedges, arbitrarily assuming the direc-
tion of the moment equilibrium forces which act between the wedges, and ne-
glecting any frictional forces between adjacent wedges.

(3) Figure 4-8 also illustrates how the failure surface would be divided
into wedges. The base of a wedge is formed from either a section of the fail-
ure surface that lies in a single soil material or along the base of the
structure. The interface between any two adjacent wedges is assumed to be a
vertical plane which extends from the intersection of the corners of the two
adjacent wedges upward to the top soil surface. The base of a wedge, the ver-
tical interface on each side of the wedge, and the top soil surface between
the vertical interfaces define the boundaries of an individual wedge.

(4) In the sliding analysis, the retaining or flood wall and the sur-
rounding soil are assumed to act as a system of wedges as shown in Figure 4-8.
The soil-structure system is divided into one or more driving wedges, one
structural wedge, and one or more resisting wedges.
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(5) Depending on the geologic conditions of the foundation material, the
the location of the total failure surface or parts of the failure surface may
be predetermined. The inclination of some of the failure planes or the start-
ing elevation of the failure planes adjacent to the structure may be known due
to natural constraints at the site. Conditions which warrant the predetermin-
ation of parts of the failure surface include bedding planes or cracks in a
rock foundation.

c. Analysis Procedure of the Soil-Structure System . An iterative proce-
dure can be used to find the critical failure surface. For an assumed factor
of safety, the inclination of the base of each wedge is varied to produce a
maximum driving force for a driving wedge or a minimum resisting force for a
resisting wedge. The assumed factor of safety affects the critical inclina-
tion of the base of each wedge. The factor of safety is varied until a fail-
ure surface is produced that satisfies equilibrium. The failure surface which
results from this procedure will be the one with the lowest factor of safety.
Several base inclinations of the structural wedge, such as those shown in Fig-
ure 4-8, should be evaluated to determine the failure surface which has the
lowest factor of safety.

4-11. Sliding Factor of Safety

a. General . Limit equilibrium analysis is used to assess the stability
against sliding. A factor of safety (FS) is applied to the factors which
affect the sliding stability and are known with the least degree of certainty.
These factors are the material strength properties. An FS is applied to the
material strength properties in a manner that places the forces acting on the
structure and soil wedges into equilibrium. Since the in situ strength para-
meters of rock and soil are never known exactly, one role of the FS s to
compensate for the uncertainty that exists in assigning single values to such
important parameters. In other words, the FS compensates for the difference
between what may be the real shear strength and the shear strength assumed for
the analysis.

b. Definition .

(1) A state of limiting equilibrium is said to exist when the applied
shear stresses are equal to the maximum shear strength along a potential fail-
ure surface. Therefore, a structure is stable against sliding along a poten-
tial failure surface when the applied shear stress is less than the available
shear strength along that surface. The ratio of the shear strength to the
applied shear stress along a potential failure surface is defined as the FS ,
as shown in Equation 4-5.

~
t+h

FS = —= = 0" (tan d)) + c [4_5]
T

-
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where

—
1

f maximum shear strength according to the Mohr-Coulomb failure
criterion

applied shear stress

T

(2) The sliding FS can also be defined as the ratio of the shear force
(T F) that would cause failure along the slip plane to the corresponding shear

force (T) along the slip plane at service conditions (see Figure 4-9):

EE _N' tan ¢ + cL
T

FS = T

where L is the length of base in compression for a 1-foot strip of wall.
For ¢ =20,

FS = N' tan ¢ _ tan ¢
= = =
N' tan ¢d tan ¢d
or for ¢ =20,
Fs = L - ©
cql Cq
where tan ®g Cy4 is that portion of the shear strength considered to be

mobilized or developed along the slip plane(s).

4-12. Assumptions and Simplifications

a. Slip Surface . The slip surface can be a combination of planes and
curved surfaces, but for simplicity, all slip surfaces are assumed to be
planes. These planes form the bases of the wedges. It should be noted that
for the analysis to be realistic, the assumed slip planes have to be kinemati-
cally possible. In rock, the slip planes may be predetermined by discontinui-
ties in the foundation. If alternate planes are possible, all must be
considered to find the most critical.

b. Two-Dimensional Analysis . The sliding equilibrium method presented is
a two-dimensional analysis. This method should be extended to a three-
dimensional analysis if unigue three-dimensional geometric features and loads
critically affect the sliding stability of a specific structure.
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c. Force Equilibrium Only . Only force equilibrium is satisfied. Moment
equilibrium is not considered. The shearing force acting parallel to the in-
terface of any two wedges is assumed to be negligible. Therefore, the portion
of the slip surface at the bottom of each wedge is loaded only by the forces
directly above or below it. There is no interaction of vertical effects be-
tween the wedges. The resulting wedge forces are assumed horizontal.

d. Displacements . Considerations regarding displacements are excluded
from the limit equilibrium approach. The relative rigidity of different
foundation materials supporting the structure and the concrete structure it-
self may influence the results of the sliding stability analysis. Such com-
plex structure-foundation systems may require a more intensive sliding
investigation than a limit equilibrium approach. The effects of strain com-
patibility along the assumed slip surface may be approximated in the limit
equilibrium approach by selecting the shear strength parameters from in situ
or laboratory tests consistent with the failure strain selected for the stiff-
est material.

e. Relationship Between Shearing and Normal Forces . A linear relation-
ship is assumed between the resisting shearing force and the normal force act-
ing on the slip plane beneath each wedge. This relationship is determined by
the Mohr-Coulomb failure criterion.

f. Structural Wedge . The general wedge equation is based on the assump-
tion that shearing forces do not act on the vertical wedge boundaries. Hence,
there can only be one structural wedge since concrete structures transmit
significant shearing forces across vertical internal planes. Discontinuities
in the slip path beneath the structural wedge should be modeled by assuming an
average slip plane along the base of the structural wedge.

g. Interface of Other Wedges with Structural Wedge . The interface be-
tween the group of driving wedges and the structural wedge is assumed to be a
vertical plane located at the heel of the structural wedge and extending to
the base of the structural wedge. The interface between the group of resist-
ing wedges and the structural wedge is assumed to be a vertical plane located
at the toe of the structural wedge and extending to the base of the structural
wedge.

4-13. General Wedge Equation

a. Sign Convention

(1) The geometry and sign convention of a typical i th wedge and adjacent
wedges are shown in Figure 4-10. The equations for the sliding stability of a
general wedge system are derived using a right-hand coordinate system. The
origin of each wedge is located at the lower left corner of the wedge. The
x-axis is horizontal and the y-axis is vertical.

(2) Axes which are tangent (t) and normal (n) to a failure plane are
inclined at an angle ( o) to the +x- and +y-axes. A negative angle is formed

4-20



X0

EM 1110-2-2502

29 Sep 89
Ty
A
+1
+X
@+ X 5=+ X
- X
POSITIVE ROTATION
NEGATIVE ROTATION
Y4 OF AXES
+‘(i
Y- l
Bi-|
Bi+i |
R i"]’h WEDCE //(/'
(i-1°") WEDGE | (STRUCTURAL
WEDGE) "
(i+15") WEDGE
Kj+
== X1+
(i —
/é i \/\,‘\
Figure 4-10. Geometry of typical i th wedge and adjacent wedges
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from a clockwise rotation of the axes. A positive angle is formed from a
counterclockwise rotation of the axes.

b. Derivation .

(1) By writing equilibrium equations normal and parallel to the slip

plane for a typical wedge as shown in Figure 4-9, solving for N’ i and Ti ,
and substituting the expressions for N’ i and Ti into Equation 4-6 for the
factor of safety of the i th wedge, the following equation results. (Refer to

Appendix L for a detailed derivation.)

FS = g[(WL + Vi) cos g + (HLi - HRi) sin o

+ - i - -
(Pi—l Pi) sin a4 Ui] tan o4 + CiLi§ [(HLi HRi) cos g

+ (Pi—l - Pi) cos a; - (Wi + Vi) sin aijl [4-8]

solving for (P - Pi) gives the general wedge equation,

i-1

(Pi—l - Pi) = [(wi + Vi)(tan ¢di cos o + sin ai) - Ui tan ¢di

+ (HLi - HRi) (tan $a1 sin a; — cos ui)
+ CdiLi:l/ (cos oy - tan a4 sin ai) [4-9]
where
i = number of wedge being analyzed
P i1 Pi) = summation of applied forces acting horizontally on the i th
wedge. (A negative value for this term indicates that the
applied forces acting on the i th wedge exceed the forces
resisting sliding along the base of the wedge. A positive
value for this term indicates that the applied forces acting
on the i th wedge are less than the forces resisting sliding
along the base of the wedge.)
VY = total weight of water, soil, rock, or concrete in the i th
wedge
V. = any vertical force applied above the top of i th wedge
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o
=)
a°
I

tan ? IFS
a. = angle between slip plane of the i th wedge and the
horizontal (positive is counterclockwise)

U = uplift force exerted along slip plane of the i th wedge

H. = any horizontal force applied above the top or below the
bottom of the left side adjacent wedge

H,. = any horizontal force applied above the top or below the
bottom of the right side adjacent wedge

c, = c/FS

L. = length along the slip plane of the i th wedge

(2) This equation is used to compute the sum of the applied forces acting
horizontally on each wedge for an assumed FS . The same FS s used for
each wedge. The system of wedges is in equilibrium if the horizontal forces
calculated from Equation 4-9, for all wedges, sum to zero.

4-14. Slip-Plane Angle

a. Definition of Critical Slip-Plane Angle . The slip-plane angle a
varies with the value of the FS . For a driving wedge, the critical a
would be the angle that produces a maximum driving force as calculated using
Equation 4-9. For a resisting wedge, the critical o would be the angle that
produces a minimum resisting force as calculated using Equation 4-9. Since
the determination of o is a trial-and-error procedure, for an initial trial
the slip-plane angle a for a driving wedge can be approximated by:

o, %a
a = 45° + 5 [4~10]

where @, = tan -1 (tan @FS) . For a resisting wedge, the slip-plane angle
can be approximated by:

k2

a=45"‘2

[4-11]

b. Computation of Critical Slip Plane Angle . The above equations for the
slip-plane angle are the exact solutions for wedges with a horizontal top
surface with or without a uniform surcharge. Other methods to calculate the
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critical slip angle, for conditions other than a horizontal top surface with
or without a uniform surcharge, may be found in paragraph 3-13.

4-15. Single Wedge Analysis

a. Introduction . A quick check of the sliding stability of a structure
can be obtained by performing a single wedge analysis of the structural wedge
using the same loadings computed from an overturning analysis if the minimum
required sliding FS is no greater than 1.5. If a minimum sliding FS
greater than 1.5 is used, driving forces would be larger than the forces cal-
culated from the overturning analysis, which uses an SMF (paragraph 3-11) of
two-thirds. In this case, the single wedge equation might incorrectly indi-
cate the structure to satisfy criteria for the larger FS (see para-
graph 4-15b(5) for removing this restraint). Example calculations are shown
in Appendix N.

b. Procedure for Single Wedge Analysis

(1) Compute the sliding resistance required for equilibrium parallel to
the assumed sliding plane beneath the structural wedge. Use the forces com-
puted from the overturning analysis for the same loading case being analyzed
for sliding. The sliding resistance required for equilibrium is calculated as
shown in Figure 4-11.

(2) Compute the total sliding resistance available along the assumed
sliding plane beneath the structural wedge using the unfactored shear strength
parameters and divide the total sliding resistance by the minimum factor of
safety required for the case being analyzed.

(3) If the sliding resistance needed, as computed in step (1), is equal
to or less than the available sliding resistance divided by the minimum
sliding factor of safety as computed in step (2), a multiple wedge analysis is
not required. A multiple wedge analysis would give a sliding FS equal to or
greater than the minimum required. This check on the sliding stability can be
expressed by:

SN' tan ¢ + cL

T FS

where

T = resultant of sliding resistance parallel to the assumed
sliding plane required for equilibrium

N’ resultant of forces normal to the assumed sliding plane

unfactored shear strength parameters of the foundation
material through which the sliding plane passes

tan ¢ and c
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L = length of sliding plane beneath the structure
FS = minimum sliding factor of safety required

If the assumed sliding plane is horizontal, T would equal the resultant of
the horizontal forces and N’ would equal the resultant of the vertical
forces. See example 1 in Appendix N.

(4) If Equation 4-12 is not satisfied, perform a multiple wedge analysis
to determine the actual sliding factor of safety (see the following
paragraph).

(5) The necessity for a multiple wedge solution may be eliminated if the
driving and resisting wedge forces are calculated using the minimum FS re-
quired. If Equation 4-12 is not satisfied for the FS required, a multiple
wedge solution will show the same results. If Equation 4-12 is satisfied, the
system has an FS equal to or greater than the minimum FS required.

4-16. Multiple Wedge Analysis

a. Procedure .

(1) Divide the assumed sliding mass into a number of wedges, including a
single structural wedge, based on the configuration and discontinuities of the
backfill, wall proportions, and discontinuities of the foundation.

(2) Estimate the FS for the first trial.

(3) Compute the critical sliding angles for each wedge. For a driving
wedge, the critical angle is the angle that produces a maximum driving force.
For a resisting wedge, the critical angle is the angle that produces a minimum
resisting force.

(4) Compute the uplift pressures, if any, along the slip plane. The
effects of seepage should be included.

(5) Compute the weight of the wedges, including any water and surcharges.

(6) Compute the summation of the lateral forces for each wedge using the
general wedge equation. In certain cases where the loadings or wedge geome-
tries are complicated, the critical angles of the wedges may not be easily
calculated. The general wedge equation may be used to iterate and find the
critical angle of a wedge by varying the angle of the wedge to find a minimum
resisting or maximum driving force.

(7) Sum the lateral forces for all the wedges.

(8) If the sum of the lateral forces is negative, decrease the FS and
recompute the sum of the lateral forces. By decreasing the FS, a greater
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percentage of the shearing strength along the slip planes is mobilized. If
the sum of the lateral forces is positive, increase the FS and recompute the
sum of the lateral forces. By increasing the FS, a smaller percentage of the
shearing strength is mobilized.

(9) Continue this trial-and-error process until the sum of the lateral
forces is approximately zero for the FS used. This will determine the FS that
causes the sliding mass to be in horizontal equilibrium.

(10) If the FS is less than the minimum required, redesign by widening or
sloping the base or by providing a key.

b. Computer Program . The computer program CSLIDE (Appendix O) can assist
in performing a multiple wedge sliding analysis.

4-17. Sliding Stability Criteria . The sliding stability criteria are given
in terms of a minimum factor of safety for the various loading conditions as
shown in Tables 4-1 through 4-3. Guidance on deep-seated sliding is given in
Chapter 5.

4-18. Design Considerations

a. Effects of Cracks in Foundation . Sliding analyses should consider the
effects of cracks on the active side of the structural wedge in the foundation
material due to differential settlement, shrinkage, or joints in the rock
mass. The depth of cracking in cohesive foundation material with a plane
ground surface can be estimated with the following equations.

(150 + 2%)
d = = —= tan | 45° + — [4-13]

c/FS

(]
1

tan (tan  @/FS)

g
1]

Yy, K A (see Equation 3-11)

For sloping backfills see Appendix I. The value d c in a cohesive foundation

and the depth of cracking in massive strong rock foundations should be assumed
to extend to the base of the structural wedge. The depth of cracking in a

level clay blanket should be computed using Equation 4-13. Full hydrostatic
pressure should be assumed to act at the bottom of the crack. The hydraulic
gradient across the base of the structural wedge should reflect the presence

of a crack at the heel of the structural wedge. Examples showing the calcula-
tion of d o are found in Appendix N in examples 3, 4, 5, 6, and 7.
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b. Passive Resistance . When passive resistance is used, special con-
siderations must be made. Rock or soil that may be subjected to high velocity
water scouring should not be used unless amply protected. Also, the compres-
sive strength of rock layers must be sufficient to develop the wedge resis-
tance. In some cases, wedge resistance should not be assumed without
resorting to special treatment, such as rock anchors.

Section V. Bearing Capacity Analysis

4-19. General Computations . The bearing capacity is checked for the same
loading conditions as determined by the overturning analysis for each case
analyzed. The bearing capacity should be checked along the same plane assumed
in the sliding analysis. A normal (N) and tangent (T) force are calculated

for the structural wedge along the assumed bearing plane. These forces are
shown in Figure 4-11. T and N’ are used in combination to check the bear-
ing capacity. The bearing capacity analysis discussed in Chapter 5 and in the
CBEAR User's Guide (Mosher and Pace 1982) (see Appendix O) considers both the
normal and tangent components of the resultant force at the base of the struc-
ture. The factor of safety against a bearing failure can be computed by

dividing the normal component of the ultimate bearing capacity by the effec-

tive normal force applied to the structural wedge as shown below:

FS =

=fo

[4-14]

where
Q = normal component of the ultimate bearing capacity
N’ = effective normal force applied to the structural wedge

The value computed from the general bearing capacity equation in Chapter 5 is
the bearing capacity normal to the base of the structure. The computer pro-
gram CBEAR (Appendix O) can assist in performing a bearing capacity analysis.
Example calculations are shown in Appendix N.

4-20. Inadequate Bearing Capacity . If the factor of safety against bearing
failure is insufficient, consideration should be given to increasing the width
of the base, lowering the base of the wall, or founding the wall on piles.

4-21. Bearing Capacity Criteria . The criteria for bearing capacity are given
in terms of a factor of safety as defined in paragraph 4-19 and shown in
Tables 4-1 through 4-3.

Section VI. Summary of Design Procedures

4-22. Design Procedures . Figure 4-12 presents a summary of the design proce-
dures discussed in this chapter.
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